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the inverse problem of Lagrangian dynamics 
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Instituut voor Theoretische Mechanica, Rijksuniversiteit Gent, Krijgslaan 27149 ,  B-9000 
Gent, Belgium 

Received 18 September 1981, in final form 12 November 1981 

Abstract. This paper deals with the general problem of finding a multiplier matrix which 
can give to a prescribed system of second-order ordinary differential equations the structure 
of Euler-Lagrange equations. The approach is based on a generalisation of previous 
studies on linear systems. We also pay attention to the relationship with a recently 
proposed alternative procedure, with respect to which we gain considerable simplifications 
and new insights. The main result concerns a set of necessary and sufficient conditions 
for the existence of a multiplier, which contains an infinite set of algebraic equations, the 
coefficients of which can be used to derive necessary conditions involving only the given 
right-hand sides of the differential equations. An outline is given of interesting points for 
future studies, and an example is presented for which all multipliers are explicitly con- 
structed. 

1. Introduction 

The inverse problem of Lagrangian mechanics, or more generally the inverse problem 
of the calculus of variations, is a subject which has been studied over several decades, 
and in fact traces back to the previous century. It concerns for instance the question 
under what circumstances a given system of second-order ordinary differential 
equations 

d i  = f % ,  434) i = l , ,  . . , n (1) 

can be derived from a variational principle, or more precisely, under what conditions 
a non-singular multiplier matrix (cuij(t, 4,cj)) can be constructed such that 

for some function L(t, 4 , 4 ) .  The necessary and sufficient conditions under which a 
general expression like aii(t, 4, 4)d' +pi( t ,  4 , 4 )  can be identified with the right-hand 
side of (2) are usually referred to as the Helmholtz conditions (Helmholtz 1887), 
although Helmholtz did not prove their sufficiency. They are mostly written as 

f f i j  = ajj (3) 
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Despite the long-term interest in this problem and the numerous contributions, one 
can readily say that nobody has ever come close to solving the general problem (apart 
from some very recent developments quoted later on). The reason for this opinion 
is that there are many different ways of deriving the Helmholtz conditions, and many 
of the authors in some sense are doing just that. In an enumeration of possible 
approaches (and sample papers in each area) we can mention the so-called self- 
adjointness of the equations (Santilli 1978), the introduction of an appropriate type 
of differential calculus (Dedecker 1950, Tulczyjew 1975, Lawruk and Tulczyjew 1977), 
the use of a Vainberg-type theory of potential operators (Tonti 1969a, b, Vanderbau- 
whede 1978, 1979), or a more abstract geometrical approach making use of 
cohomology theory (Takens 1979). It is by no means our intention to criticise such 
contributions, which are sometimes of extreme importance in providing better insight 
into the nature of the problem. To name only some merits; certain approaches succeed 
in deriving Helmholtz-type conditions in one and the same formula for differential 
equations of arbitrary order or for the case of field equations; others set the stage for 
a global discussion of variational calculus. In a purely local context, however, and 
for second-order systems like (l), the hard problem is to try to eliminate the multiplier 
a from the Helmholtz conditions, in other words to come up with conditions for the 
existence of a multiplier, which are expressed in terms of the given functions f i  only. 
Two cases have been solved this way in the older literature. First of all, there is the 
rather trivial case of one degree of freedom, for which Darboux (1894) already 
proved that a Lagrangian always exists, and for which various nice properties can be 
discussed (see e.g. Currie and Saletan 1966, Kobussen 1979, Sarlet 1981). Secondly, 
Douglas (1941) has completely solved the case n = 2. The complexity of his analysis 
has probably discouraged people for a long time from trying further generalisations. 

Over the last few years now, there has been an intensive study of the inverse 
problem for linear second-order equations (Bahar et a1 1978, Kwatny et al 1979, 
Sarlet 1980, Novak and Milic 1980, Sarlet et a1 1982), apparently for its possible 
relevance for applications in network theory (Bahar and Kwatny 1980). The contribu- 
tions of Sarlet et a1 (1982) may be said to come close to the solution for general linear 
systems, because they provide an infinite set of algebraic necessary and sufficient 
conditions, the consistency of which will inevitably lead to vanishing determinants, 
which then exactly constitute conditions on the given elements of the equations of 
motion. This analysis moreover gave rise to a number of interesting sufficiency criteria 
for the existence of a Lagrangian. 

It is the purpose of the present paper to extend the analysis for linear systems to 
the general problem formulated by (2). This will in the first place require reworking 
the Helmholtz conditions (3)-(6), bringing them into a simplified and equivalent form, 
much along the guidelines set out for linear systems. The first theorem in that 
procedure has already been derived in a different way by Douglas (1941). Part of 
the further reconditioning has been independently derived by Novak (1981). From 
the reduced form of the Helmholtz conditions, we are again able to produce an infinite 
set of necessary and sufficient conditions, which are all algebraic in nature, except for 
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two. These two exceptions of course embody the much greater complexity of the 
general problem with respect to the case of linear systems. The algebraic-type 
conditions constitute a simplification of similar conditions recently derived by Hen- 
neaux (1981), who made use of a quite elegant procedure invoking the translation of 
the Helmholtz conditions to a set of conditions on the equivalent first-order system 
in q and 4. We report on Henneaux’ approach in an appendix, and provide details 
about its relationship with the present approach. In the final sections of the paper 
we give an outline of interesting features for future study, we relate our approach to 
Douglas’ work for n = 2, and we present an example. 

2. Other forms of the Helmholtz conditions 

Our starting point will be the conditions (3)-(6),  in which in accordance with (2) we set 

pi = -a i j f ’ .  (7) 

We further introduce the notations 

-= -+c j k___ i ;+ f  ~a a k a  7. 
Dt at aq a4 

It is then straightforward to verify that the equations ( 5 )  and (6 )  can be rewritten as 

D a  DP - = a~ -+ AL 
Dt Dt 

-==’a-aB 

whereby one will have to use the identity 

Moreover, the matrix p can be completely eliminated from the picture (in view of 
(9b) ) ,  which leads to the following result. 

Theorem 1 .  A non-singular n x n matrix a (t, q, 4 )  will be a multiplier for (1) if and 
only if it satisfies the conditions 

aa-. aaik T A-- 
adk - a$ a = a  

Da 
Dt 
-- - crk- t ATa 

a @CO) = (a @(O))T 

where @(‘)(t, q, q )  is a matrix defined by 

= B - A2 - DA/Df. 
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Remarks. This theorem was already derived by Douglas (1941), who proved the 
necessity and sufficiency of conditions (13) without passing through the Helmholtz 
conditions (3)-(6). 

(and similar quantities later on) are chosen in such 
a way that they coincide for linear systems with the same quantities in Sarlet et a1 
(1982). 

At this point, it is interesting to make a connection with an alternative approach, 
which starts from the self-adjointness conditions of first-order equations. Consider a 
general system of first-order equations like 

(15) 

Then it is well known (see e.g. Sarlet and Cantrijn 1978) that a non-singular multiplier 
matrix C,,(t, x )  will make (15) derivable from a variational principle, if and only if it 
is skew symmetric and satisfies 

The notations A, B and 

i" = F"(t, x )  k = 1,. . . ,2n. 

The conditions (16) characterise a closed 2-form in x-space, depending parametrically 
on t (alternatively, (16) and (17) define a closed 2-form in ( t ,  x)-space). For further 
use, we shall refer to (16) as the closure conditions. Consider now the case that (15) 
is equivalent to the second-order system ( l ) ,  i.e. let 

x = col(q, 4 )  F = col(4, f) (18) 

then the existence of a Lagrangian multiplier can be translated to a first-order 
counterpart by the following result. 

Theorem 2. Equation (1) will have a multiplier a if and only if the corresponding 
first-order system defined through (18) and (15) has a multiplier (C,,,), satisfying the 
additional restriction 

c,, = 0 fork ,  v = n + l , .  . . ,2n. (19) 

More details about this transition can be found in Sarlet (1979). The same theorem 
has recently been derived in more geometrical terms by de Ritis et a1 (1981), by 
Henneaux (1981) and by Crampin (1981). 

From now on we assume that all given functions are analytic in a certain domain 
R of ( t ,  x )  space. Then, (17) is a partial differential equation for C,, which has been 
solved in terms of the derivative with respect to one specific variable ( t ) .  Hence, it 
has the form to which the Cauchy-Kowalewski theorem (see e.g. Courant and Hilbert 
1962, p 39, Haack and Wendland 1972, p 15) can be applied, ensuring the existence 
and uniqueness of analytic solutions in terms of arbitrarily assigned 'initial functions' 
C,,(t0, x). Since a/& of the left-hand side of (16) is identically zero in view of (17), 
it is obvious that a solution of (17) will satisfy (16) at all t, as soon as it satisfies it at 
t = to. Henneaux' procedure exploits the fact that a similar property does not hold 
concerning the additional algebraic conditions (19). We show in the appendix that 
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the first few steps in Henneaux' method allow one to conclude that C must have the 
form 

(20) 

The evolution-type equations (17), when written out for the separate parts a and p 
in C, precisely yield equations (11). According to theorem 2, we then still have to 
impose the closure conditions (16). For a C of type (20), they give rise to three 
equations. One of these is just equation (136). Another one appears to be the identity 
(12). The third one reads 

Since we have not encountered this condition in the context of theorem 1, it has to 
be an identity too (see the appendix). Note that this redundancy in the number of 
closure conditions can also be given a geometrical interpretation. Indeed, the reader 
who consults Crampin's recent contribution (Crampin 198 1) will discover a connection 
with the fact that the closedness of the 2-form w (whose coefficient matrix is C) can 
be replaced by some weaker conditions in terms of Lagrangian subspaces (which, by 
the way, also explains the appearance of the zero-block in C). 

3. Further reduction of the Helmholtz conditions 

For linear systems, we succeeded in making a further reduction, consisting just in 
replacing condition (13a) by a similar requirement on the initial value only. This may 
seem to be a rather unimportant detail, but it is indispensable for completing the 
derivation of the infinite set of algebraic conditions, which can ultimately be used to 
obtain requirements on the f only. 

So, it is quite natural that we try a similar reduction in the present general situation, 
not only concerning condition (13a), but also with respect to the additional condition 
(136). The following lemma will be useful for that purpose. 

Lemma 3. Let g: R x R" + R k, ( 1 ,  x)+  g(t, x)  (m and k arbitrary) satisfy a partial 
differential equation of the type 

(22) ag/at = U , ( ? ,  x)ag/axi + G(t, X, g )  goo, x)  = 0 

with coefficients which are analytic in some suitable domain. Assume further that 

a'G(t0, x, o)/at' = 0 

for all x in the related domain. Then g(t, x)  = 0. 
VI = 0, 1, * . . (23) 

Proof. In view of the analyticity, assumptions (23) imply G(t, x, 0) = 0. This in turn 
means that (22) has the zero solution. Since the Cauchy-Kowalewski theorem ensures 
uniqueness of the solution with given Cauchy data, the conclusion follows. 

Applying the above lemma to the equation 

D(a-a ' ) /D t=(a -aT)A+AT(a-aT)  



1508 W Sarlet 

which follows from (13c), it immediately follows that the condition (13a) can be 
replaced by 

a ( to,  994) = (cy ( to ,  4, 4NT. 
Concerning condition (136), one could proceed in exactly the same way: first find out 
what differential equation will be satisfied by that condition as a result of (13c), and 
then continue this procedure for newly introduced terms until a closed system is 
obtained to which lemma 3 can be applied. One then would come to the conclusion 
that it is not enough to assume (136) at f = to only. Quite remarkably, however, it is 
sufficient to add as an assumption the next term in the Taylor expansion of (136) at 
t = to, namely 

a2a,,, a aij 
7 ( to ,  q , 4 )  = - (to,  q, 4 ) .  ataq atad' 

2 

(24) 

Proving this statement becomes somewhat easier if one knows about the equivalent 
'first-order picture' as described in the previous section. To be precise, we shall show 
now that under the assumptions of theorem 1, but with (136) replaced by (13a) at 
t = to and (24), all closure conditions (16) hold true at t = to. We then know that they 
are equally true for all t, so that in particular (136) will be satisfied for all r. 

First recall that (13c) and (13d) imply (116) with p defined by (96). If we again 
introduce the vector components p, by (7), (9a)  is no longer valid for all r, but the 
present assumptions ensure that 

(Note: here and in what follows, for any function g(t,q,d), we shall abbreviate 

Next, by using (25~1,  the differential equation (13c) for cy, and the present 
d t o ,  434) to g(to).) 

assumptions at t = to, one arrives at 

which is one of the closure conditions (16) at f = to. 
Making use of (26), the differential equation (116) for p produces the property 

Then, from (25a), proceeding as for (A3), and using (27) and (25), one easily derives 
the third closure condition (21) at t = to, which completes the proof. 

When we think of applying the Cauchy-Kowalewski theorem to (13c), with t as 
the independent variable which is singled out, the conditions (24) do not have an 
appropriate form because they do not impose restrictions on the initial functions 
a(t0, q, 4 ) .  They can, however, equivalently be replaced by the closure condition 
(26) at t = to, and this condition can entirely be expressed in terms of a(to). Collecting 
together all the previous results we have thus proved the following theorem. 
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Theorem 4. A non-singular matrix a(t ,  q, q )  will be a multiplier for (1) if and only 
if it satisfies 

f f  @@) = ( a @(O))T 
Dff 
Dt 
- = a~ 

Remark. It is worthwhile commenting on this result in connection with Henneaux' 
procedure as outlined in the appendix. We have already seen in theorem 1 that the 
closure conditions (16) can be simplified to only one condition, namely (13b), when 
they are imposed for all t. We now see that passing to conditions on the initial 
functions at t = to requires the introduction of a second closure condition, namely (26) 
at t = to, but we still have a simplification with respect to (16) because (21) is still an 
identity at t = to if the other conditions hold true. 

The next theorem states a further reformulation of theorem 4 which, for linear 
systems, has a natural interpretation as being related to a 'reduction to canonical 
form' (see Sarlet et a1 1982). 

Theorem 5. Let U(t,  q, 4) be the non-singular solution of the matrix partial differential 
equation 

( 2 9 ~ )  

with initial value U(to, q, 4 )  = 1, the n x n unit matrix (solution guaranteed by the 
Cauchy-Kowalewski theorem). Then every multiplier a of (1) is of the form 

cy = ( U - y S U - '  (2%) 

D U/ D t + A U = 0 

and the necessary and sufficient conditions to be satisfied by S(r, q, 4 )  read 

DS/Dt = 0 sz = (SZ)T (29f, g )  
Z ( t ,  q, 4 )  being defined by 

Proof. U being uniquely defined by (29a) and its initial value, (296) can be considered 
as a substitution which defines S in terms of a or vice versa. Taking the total time 
derivative of (29b), and making use of the property 

it is straightforward to verify that a will satisfy (28d) if and only if S satisfies (29f). 
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Equally simple is the verification that (29g), with 2 defined by (30), is equivalent to 
(28e). Finally, in view of the initial value of U we have 

(31) 

so that (29c)-(29e) immediately follow from (28a)-(28c) and vice versa. 
Theorem 5 is in fact a refinement of a similar result, independently derived by 

Novak (1981), whereby the difference lies essentially in our introduction of the initial 
value to in (29c)-(29e), seemingly a detail, but indispensible for the full translation 
of conditions on a to conditions on S, and for the further analysis in 0 4. It is already 
possible to draw some general conclusions from the results in this section, such as the 
corollaries presented below, the numbering of which refers to the statement from 
which they follow, 

a( to ,  4, 4 )  = S ( t 0 , 4 , 4 )  

Corollary 1 .1 .  If the given functions f '  are independent of the velocities, then a 
multiplier which would not depend on 4 either, necessarily has to be constant. 

Proof. Looking at theorem 1, the present assumptions imply A = 0, and therefore a 
has to be a matrix of constants of the motion. First integrals which would not depend 
on q can of course only be trivial constants. 

A similar statement for the special case of diagonal multipliers was made by Havas 
(1957). 

Corollary 1.2. System (1) is of Lagrangian type in its given form if and only if 

(32) A = - A ~  @CO, = @(OF 

Proof. Conditions (32) are precisely necessary and sufficient for (13) to have the unit 
matrix as solution for a. 

Note: the matrix U becomes orthogonal when A is skew symmetric. 

Corollary 5.1. Suppose that (1) has two different multipliers a1 and a2,  and put 

M = ala;'. 

Then (i) det(M) is a first integral of ( l ) ,  (ii) the traces of all powers of M are first 
integrals. 

Proof. From theorem 5 we know that 

a1 = ( U-l)TS1 U-' a2 = (U-1)TS2U-1 

where all elements of S1 and Sz are first integrals. The result then follows trivially. 

at length by Hojman and Harleston (1981). 
Property (i) was first derived by Lutzky (1979); property (ii) was recently derived 

4. An infinite set of necessary and sufficient conditions 

Now we go back to theorem 5, and proceed further along the lines followed for linear 
systems by Sarlet et a1 (1982). Computing the total time derivative of the matrix 2 
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defined by (30) ,  and taking account of (29a) ,  we obtain 

with 
D@‘O’ 

@(l)(t, 4, 4 )  =-+[A, @(‘)I 
Dt 

Similarly we define 

1 5 1 1  

(33)  

(34) 

Writing Zrkl for the kth-order total time derivative of 2, we then have 

+ I =  U-’@‘k’u* (36) 

All matrices Q f k )  are expressions involving the given f i  only. They could also in a 
natural way be brought into the picture by proceeding with conditions (28) instead 
of (29) (see Sarlet 1980). In fact, since the two matrices aand  S must coincide at 
t = to, it will be convenient to introduce a new notation for their common initial value, 

(37) 
so that the following main theorem can then be attached to either theorem 4 or 
theorem 5 .  

Y(494)  = &(to, 494)  = S(t0, 4, 4 ) ,  

Theorem 6 .  Equation ( 1 )  will have a multiplier a if and only if a non-singular matrix 
y ( q ,  4 )  exists, satisfying 

y@‘k)(to) = (y@(k’(to))T k = 0, 1 ,  . . . , 00 

the matrices @(k) ( t ,  4, q )  being recursively defined by (35).  
(39(k)) 

Proof. (i) Necessity. Assuming a multiplier exists, equations (29) will have a solution 
for S. From (290 and (29g) it then follows by taking successive derivatives that 

SZ[k’= (SZ[k])T k = 0 , 1 ,  . . . ,  W. 

leads to the desired result. 
(ii) Sufficiency. Assume that y satisfies (38) and (39), and let S(t,  q, 4 )  be the solution 
of (290  with y as the initial value (by Cauchy-Kowalewski). Then we have 

a D a -(SZ-(SZ)T)=-(SZ-(SZ)T)-Fu__;;(SZ-(SZ)T) 
at Dt ax 
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with x = col(4, q ) ,  and F = coI(4, f) as in (18). In other words we have 

(41) 
a a 
at 
- (SZ - (SZ)') = - F a g  (SZ - (SZ)=) + G(t,  X )  

with G(t,  x )  = SZ[ll- (SZ[ll)T. 

we know that 
In view of (39(1)) we have G(to,x)=O, and hence also aG/ax"(fo,x)=O. Next 

aG aG 
- = - F " y + H ( t , x )  
at ax 

with H = SZL2] - (SZ[21)T. 
Using (39(2)) together with the above intermediate results thus shows that 

aG/af(to, x )  = 0. Proceeding in the same way we shall find akG/atk(to, x )  = 0 for all 
k. Hence by (41), SZ - (SZ)' satisfies a partial differential equation of the type (22), 
together with all further assumptions of lemma 3. We thus conclude SZ = (SZ)', and 
the desired result now follows from theorem 5 .  

Let us extensively comment on this theorem, to show its relevance and because 
it seems to us that this is the end of the line, inasmuch as one does not want to 
break the elegant matrix formulae (39) apart. For a given system (l), all matrices 
@'k)( to ,  4 , 4 )  consist of known elements. So one can start solving equations (39) 
algebraically and step by step for the independent elements of a symmetric matrix y. 
If at a certain stage the freedom in y, left over from previous conditions, is no longer 
sufficient to cover the next condition, then at least by purely algebraic manipulations 
one has reached the conclusion that no Lagrangian exists in the given coordinates. 

Alternatively, (39) is an infinite system of homogeneous algebraic equations in the 
n ( n  + 1)/2 independent elements of y. Such a system can only have non-zero solutions 
if the rank of the corresponding coefficient matrix is at most $ n ( n  + 1) - 1,  which by 
the way is smaller than in Henneaux' discussion, because of the hidden identities 
involved there (see Henneaux 1981). So by explicitly expressing this rank condition 
one can, in principle, write down some awfully complicated partial differential 
equations for the functions f ' ( t ,  4,q). Douglas (194)), for the case n = 2, combined 
the first of these determinant conditions with the full partial differential equations to 
be satisfied by a, to arrive at a complete classification of the two degrees of freedom 
case. The result stated in theorem 6 suggests the possibility of looking first at all the 
conditions to be satisfied by some time-independent matrix y, whereby it is again of 
interest to point out that (apart from the lower rank condition we have obtained) we 
have also found a reduction of the number of closure conditions to be imposed, in 
comparison with the 'first-order picture' of the appendix. Such a further analysis, 
however, will strongly depend on the dimension of the given system. In the next 
section we will derive some further necessary algebraic conditions which could be 
helpful for such as purpose. But first let us discuss an interesting situation, in which 
the infinite set of conditions (39) will reduce to a finite one. 

Corollary 6.1. Assume that for some k, scalar functions A , ( &  4, 4 )  and g( t ,  4,q)  can 
be found such that 
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Then the necessary and sufficient conditions reduce to (38), and (39(1)) for 1 = 
0, 1,. . . , k - 1 .  

Proof. Assumption (42) implies a linear dependence of all @(‘“), m 2 k on lower-order 
ones, from which the result trivially follows. 

Corollary 6.2. The conclusions of corollary 6.1 hold a fortiori for the case that 

@(k)(ll q, 4 )  = 0 for some k. (43) 
A condition like (43) is what we called ‘kth order commutativity’ in the case of linear 
systems. Here such conditions do not have the same degree of sufficiency for existence 
of a Lagrangian as they had in the linear case. Still they characterise rather special 
situations, as is illustrated by the property that @ ( k )  = 0 implies that the eigenvalues 

will be first integrals of the given system, which is readily concluded from of ( p - 1 )  

5. Further algebraic necessary conditions 

Proposition 7. If a multiplier a for (1) exists, then its initial value y(q, 4 )  must 
necessarily satisfy the following infinite set of supplementary algebraic relations 

where (4i,) here stands for any of the matrices @(‘)(to, q, 4 ) .  

Proof. The conditions (38a), (386) imply that y must be of the form 

yI, = a2G/a4’a# for some function G. 
Any of the conditions (39) will therefore read like 

which can be written in the form 

(45) 

The curl structure of the left-hand side of (46) allows the introduction of a closed 
2-form. Expressing the closedness of this 2-form via the right-hand side of (46) (and 
using (45)) leads to the required conclusion. 

The additional conditions (44) exhibit the role that the dimension will play in any 
further investigation going beyond the results of theorem 6. This is already apparent 
from looking e.g. at the case of ‘first-order commutativity’ @(’) = 0. Indeed, the infinite 
set of conditions (39) then reduces to only one symmetry requirement, which leaves 
an n-parameter family of possible solutions for y. For the linear case, this immediately 
leads to an n-parameter family of Lagrangians. But here we still have the conditions 
(386, c), which in particular lead to the supplementary algebraic relations (44) with 
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4 = @(')(to, q, 4 ) .  Now for n = 2, conditions (44) are identically satisfied. For n = 3, 
they give rise to exactly one relation, reducing the original three-parameter family of 
solutions for y to a two-parameter family. For n = 4  we get four extra conditions, 
leading already to a vanishing determinant requirement. Hence, starting from n = 4, 
instead of looking solely at the rank of the algebraic system (39), it may be advantageous 
to draw necessary conditions on the fi alone from vanishing determinants, resulting 
from (39, (0)) and (44) for In this light, a possibly interesting case for further 
study would be 

a4ii/aqk = a4ik/aqi (47) 

because (44) then certainly does not impose further restrictions on the algebraic 
freedom in y. 

6, An example 

It seems to us that the main power of the infinite set of algebraic conditions lies in 
the possibility of arriving at a conclusion by very simple means for cases where no 
Lagrangian exists. Nevertheless, they will sometimes allow us also to draw positive 
conclusions, an example of which was given in Sarlet et ul (1982). Once the existence 
of a Lagrangian is confirmed, however, the actual construction of all multipliers will 
often be possible by relying solely on theorem 1.  We should like to illustrate this by 
constructing all Lagrangians for the two-dimensional Kepler problem, whose equations 
of motion are 

For this example we have 

A=O and = B is symmetric 

so that corollary 1.2 already ensures that the unit matrix is a multiplier. We then go 
back to the formulation of theorem 1, and try to determine the general solution for 
a. The algebraic condition ( 1 3 4  yields 

(49) a12  = A (a11 - a 2 2 )  

with 

Now (13c) implies that all elements of a must be first integrals. Hence, if all - a22 
were non-zero, (49) would require that A be a first integral, which is clearly impossible. 
We therefore conclude 

all = a 2 2  and a 1 2  = 0. 

aall /aqZ = o 
The conditions (136) then yield 

aaZz/aql = o 
so that all = aZ2 should be independent of 4, while being a first integral of the system, 
and therefore can only be trivially constant. Thus, the general solution for a is 
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obtained as 

Q = c l  c =scalar constant. 

In this way we have recovered along different lines that the Lagrangian for the 
two-dimensional Kepler problem is unique up to trivialities such as gauge terms and 
multiplication by a constant factor (see Henneaux 1981). 

7. Conclusions 

All the principal results of this paper have been amply discussed throughout the text, 
so we content ourselves here with a brief survey. 

The reduction of the Helmholtz conditions, which we originally derived for linear 
systems (Sarlet 1980, Sarlet et a1 1982) has been completely carried over to the 
general inverse problem of Lagrangian dynamics. A first step is reflected by theorem 
1. Further progress was possible by replacing some of the requirements involved by 
similar requirements at t = to (assuming analyticity of the given functionsf'). In carrying 
this through, it was useful to know about the equivalent 'first-order picture' described 
in 5 2, with respect to which we have obtained considerable simplifications. In some 
very restrictive sense one could say that the inverse problem is not solvable. By that 
we mean that it is impossible to arrive at a general formula for the functions f', which 
would tell us how the forces must look in order that a multiplier matrix a be 
constructable. By theorem 6, however, we come as close as possible to the solution, 
without ripping apart the still manageable form of the conditions involved. Beyond 
theorem 6, one will have to start discussing the rank of certain coefficient matrices, 
the way it was done e.g. by Douglas (1941) for n = 2. We have given certain indications 
for possible future studies along this line. 

We should like to end with some rather philosophical remarks about the practical 
applicability of the inverse problem methodology. It is sometimes argued that the 
search for a Lagrangian for a general second-order system is a valuable first step to 
pursue, because knowledge of L (through the classical methods of Lagrangian and 
Hamiltonian mechanics) might subsequently be of considerable help in trying to solve 
the given equations. This may well be true in simple situations, such as in the case 
of linear systems, but it should not be emphasised too much for general nonlinear 
systems. Indeed, when physical arguments cannot immediately give us a Lagrangian, 
we have learned that constructing one may well require, either implicitly or explicitly, 
the determination of a whole matrix of first integrals (see the structure (296) of the 
multiplier a), and this in turn could be as difficult as trying to solve the given differential 
equation. Nevertheless, we have been discussing here a well defined problem, with 
a long history of interest, and as such there is no doubt that there is room for valuable 
future contributions. 
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Appendix. Henneaux' procedure 

For convenience, here we introduce the following notational conventions: Greek 
indices run from 1 to 2n ; Latin indices on variables or functions belonging to a set 
with 2n elements will run from n + 1 to 2n;  the remaining elements of this set will 
be indicated by Latin indices with a hat. So we have in agreement with (18) 

c .  
x' = 4' x i  = q' Fi = f i  F' = 4' 

while the conditions (19) simply read Cii = 0. 
Note also that by using (16), one can rewrite (17) as 

In a slight adaptation of Henneaux' reasoning we can find an infinite set of necessary 
conditions by computing consecutive total time derivatives of (19) and making use of 
(Al) .  The first two steps lead to 

While the first of these implies the symmetry of a in the representation (20) of C, 
the second condition shows that p and a indeed must be interrelated through (96). 

After going through 0 4, the reader will have no difficulty in comparing the infinite 
set of conditions we shall derive there with the conditions which would follow in the 
'first-order picture' by pushing the procedure beyond step (A2). 

Let us finally show here that the closure conditions (21) are indeed identically 
satisfied. Making use of (9a) and (6) ,  we obtain (CP means cyclic permutation) 

from which the result readily follows. 
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